

Turning Contradictions into Opportunities: Systematic Innovation for Sustainable Water Systems

Marco Tatti ^{1, 2, 3}

¹Ttech Srl, Italy

marco@marcotatti.it

²www.trzconsulting.it, Italy

³<https://academia-eng.com/en>, Italy

Abstract

Water infrastructure worldwide faces mounting challenges from resource scarcity, aging systems, and climate change. In the Middle East and North Africa, these pressures are particularly acute, driving substantial investment in advanced solutions such as desalination, wastewater reuse, and smart water networks. However, technology deployment alone is insufficient; innovation requires a structured, repeatable process rather than unstructured or isolated initiatives.

This paper presents a methodological framework for fostering high-impact innovation in water systems, integrating the Theory of Inventive Problem Solving (TRIZ) with established innovation management processes. The approach begins with precise problem definition and functional analysis to identify inefficiencies, followed by the formulation of technical contradictions and strategies for their resolution. Using TRIZ tools such as the Contradiction Matrix, Inventive Principles, and the Ideal Final Result, the method guides the generation of targeted solution concepts, evaluated against technical, economic, and sustainability criteria. Implementation planning ensures that selected solutions progress from concept to deployment while capturing knowledge for future innovation cycles.

Two case studies illustrate the methodology: a *hybrid desalination process* combining freezing and reverse osmosis and a *Treated Sewage Effluent reuse network* that maximise reuse without compromising quality or cost.

In both cases, the digital twin is not a passive replica but an active innovation laboratory that continuously reveals contradictions, guides inventive resolutions, and validates candidate solutions under realistic conditions.

The results demonstrate the framework's effectiveness in resolving complex trade-offs efficiently and sustainably. While focused on water infrastructure, the approach is applicable across sectors facing multifaceted innovation challenges.

Keywords: Water treatment, TRIZ, Digital Twin.

1. Introduction

Water infrastructure is under growing pressure worldwide. Many regions, especially in arid climates, face severe water scarcity, aging distribution networks, and rising demand that outpaces supply capabilities. The Middle East and North Africa (MENA) exemplify this challenge: an inherently hot, dry climate and limited freshwater resources have led to heightened water stress [1]. Climate change further threatens long-term freshwater availability, making water security a top strategic priority. Governments and industries are responding with major investments in innovative water technologies and infrastructure to close the gap. For example, Middle Eastern countries now produce about 40% of the world's desalinated water, spearheading novel solutions like solar-powered desalination to transform scarcity into abundance [2]. Initiatives in desalination, wastewater reuse, smart water grids (e.g. smart meters), and large-scale conservation efforts signal that innovation is the lifeblood of a dynamic water sector [3].

Amid these efforts, a critical insight has emerged: innovation cannot be left to chance.

While enthusiasm for new ideas is plentiful, the process of translating ideas into real improvements requires structured support to stay relevant in any industry. To ensure long-term viability, innovation must span the full spectrum of opportunities and be guided systematically using appropriate methodologies, as ad hoc brainstorming or isolated pilot projects are not sufficient to address complex challenges such as aging water infrastructure, inefficient resource management, and the growing impact of climate-related water scarcity.

Organizations need a systematic approach to innovation, analogous to how they have structured processes for engineering design, quality control, or operations. This means establishing an ongoing innovation process with defined steps, ensuring that promising ideas are generated, rigorously evaluated, and finally implemented to create value.

The purpose of this paper is to present a methodological framework for systematic innovation in water systems. We aim to help technical leaders and researchers move beyond ad-hoc idea generation, toward a structured, repeatable process that can tackle the technical contradictions and complexity inherent in water infrastructure projects. The framework builds on well-established systematic innovation techniques, notably the Theory of Inventive Problem Solving (TRIZ), adapting them to the context of water supply, treatment and management. While our focus is on water infrastructure, a sector of

urgent importance in the Arab world, we emphasize that the approach is generalizable to virtually any field where innovation is needed. Here below, we outline key concepts of systematic innovation, detail the proposed methodology, and then demonstrate its application through case studies in desalination and water conservation.

2. Water Infrastructure Challenges in the Middle East

The Middle East's water sector provides a compelling context for deploying systematic innovation. Fourteen countries in the region face “extreme water stress,” meaning they are withdrawing a very high percentage of their available water resources every year [2]. Rapid population growth, urbanization, and industrial development have intensified water demand, even as groundwater aquifers are depleted and climate change brings more frequent droughts. Traditional approaches alone (e.g. drilling more wells or building conventional dams) are insufficient to ensure long-term water security.

The urgency of this scenario has transformed resource limitations into a driver of technological innovation, prompting Middle Eastern nations to increasingly adopt advanced solutions for the augmentation and efficient management of water resources. Notably, the region has become a global leader in desalination technology.

By necessity, Gulf countries like Saudi Arabia and the UAE have invested heavily in desalination plants and now account for a substantial portion of worldwide desalinated water production. Innovations, such as solar-powered desalination systems and advanced membrane technologies, are being tested and implemented, improving efficiency and reducing the historically high energy costs of desalinating seawater. In addition, countries are exploring water reuse and recycling, turning wastewater into a resource for agriculture and industry, and implementing rainwater harvesting and cloud-seeding to boost water availability. Large infrastructure projects, new dams with smart monitoring, nation-wide rollouts of smart water meters, and massive sewer tunnel systems, underscore the commitment to invest in resilient, technology-driven water infrastructure.

While the adoption of emerging technologies represents a critical component of progress, it is insufficient on its own to significantly advance water sustainability objectives. Regional stakeholders increasingly acknowledge the necessity of a systematic approach to innovation, one that moves beyond fragmented and siloed initiatives toward integrated strategies encompassing technical, organizational, and policy dimensions.

Within this framework, the application of a structured innovation methodology offers a means for water authorities, utilities, and private-sector actors to rigorously identify high-impact solutions and manage the complex trade-offs typical of water infrastructure projects, such as cost-efficiency, operational performance, and social acceptability.

3. Systematic Innovation Approaches: Concepts and Background

Innovation can be approached either randomly or systematically. In the past, many organizations relied on unstructured brainstorming or trial-and-error methods to find new ideas. While these methods can yield occasional breakthroughs, they often result in many ordinary ideas and few truly novel solutions. Research in creativity has shown that merely increasing the quantity of ideas (as in classic brainstorming) does not guarantee quality or originality; In fact, generating a flood of conventional ideas can limit creativity by reinforcing familiar patterns and preventing exploration of novel solutions. This insight has led to a “different approach” in which organized, structured processes replace unguided idea generation. In other words, systematic methods deliberately guide teams to think beyond obvious solutions, increasing the chance of breakthrough innovations.

One of the most established systematic innovation methodologies is TRIZ (the Russian acronym for “Theory of Inventive Problem Solving”). Developed by Genrich Altshuller and colleagues starting in the 1940s, TRIZ is grounded in the study of hundreds of thousands of patents to distill patterns of invention [4] [5].

Altshuller discovered that inventive solutions share common principles and often resolve specific and well defined recurring types of problems. By capturing these patterns as a set of tools and strategies, TRIZ allows problem-solvers to avoid trial-and-error and tackle problems in a more *algorithmic* way [6]. Unlike purely creative techniques, TRIZ does *not* rely on spontaneous inspiration; rather, it provides a logical, knowledge-based framework that systematically leads innovators to promising solution concepts. Notably, TRIZ’s greatest strength lies in its ability to constrain the solution search space to areas with demonstrated effectiveness; in other words, the exploration is not random but directed by established and validated patterns.

The central concept of TRIZ is resolving contradictions: most technical problems involve a trade-off or conflict between two factors; for instance, making a pipeline more durable might make it more expensive or heavy. At the heart of TRIZ is the idea that innovative solutions come from eliminating such contradictions, rather than accepting trade-offs.

TRIZ provides a matrix of **39 engineering parameters** and **40 inventive principles** as a toolkit to systematically resolve technical contradictions by applying known solution strategies. For example, if increasing flow capacity causes pressure loss in a water network (a contradiction), TRIZ principles like “Segmentation” (principle nr 1) or “Dynamics” (principle nr. 15) might suggest splitting the flow into parallel paths or using adjustable pipes, thus improving one parameter without sacrificing the other.

Figure 1: shows a graphical representation illustrating the 40 solving principles in the order proposed by Altshuller.

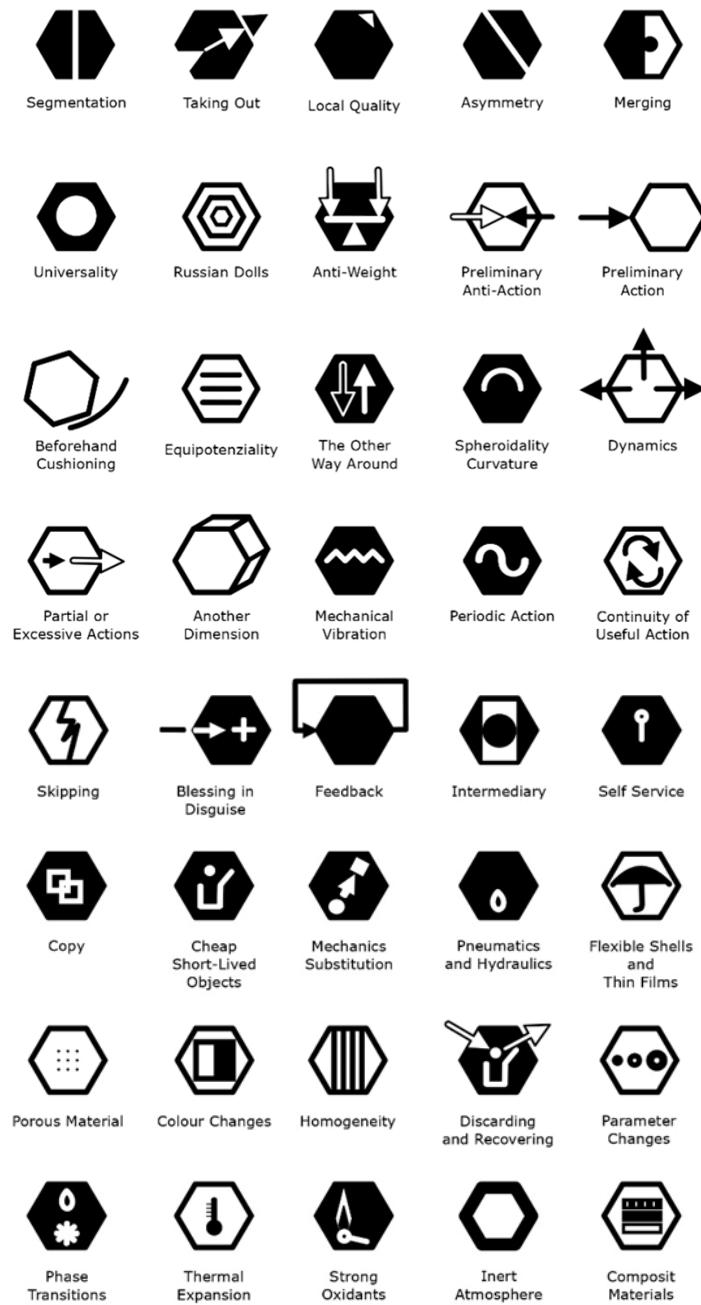


Figure 1: The 40 Inventive Principles represented with visual symbols

Another key concept in TRIZ is the **Ideal Final Result (IFR)**, which represents the most desirable solution in its ultimate form, one in which the intended function is achieved without introducing new costs, complications, or negative side effects. By clearly defining this ideal outcome, the IFR serves as a guiding reference point, allowing innovators to work backward from the optimal end state. This approach encourages the use of available resources and existing system elements, promoting simpler and more efficient solutions rather than adding unnecessary complexity.

Based on this principle, TRIZ also emphasizes Resource Analysis, which involves systematically identifying all available resources within or around the system -such as materials, energy, and information- that can be leveraged to address the

problem. Breakthrough innovations often emerge from repurposing waste streams or environmental resources; for example, utilizing the heat contained in wastewater to support treatment processes.

These concepts (contradictions, inventive principles, IFR, resource utilization, etc.) form a structured mindset that differs significantly from unstructured brainstorming.

It's worth noting that TRIZ is part of a broader family of systematic innovation techniques.

Variants and derived methods have emerged, such as *Systematic Inventive Thinking (SIT)*, which was developed in the 1990s as a more streamlined approach building on TRIZ's core idea that inventive solutions share common patterns [7]. Other structured methods include *quality-focused innovation frameworks* including Design for Six Sigma (DFSS), Quality Function Deployment (QFD), Total Quality Management (TQM), Lean approach, etc [8], and *conceptual engineering tools* (like morphological analysis or functional analysis) which can be integrated into an overall innovation process [9]. What these approaches share is a commitment to intentional and organized process, over the simple creative spontaneity. As a result, organizations that adopt systematic innovation report more repeatable and efficient idea generation, since teams spend their energy following proven strategies for innovation rather than reinventing the wheel each time.

4. Proposed Methodology for Systematic Innovation in Water Systems

Building on the above concepts, we propose a structured methodology specifically designed to foster innovation in water infrastructure projects. This systematic approach integrates the core principles of TRIZ with established innovation management stages, ensuring that the idea generation process is not only creative but also rigorously aligned with the operational, technical, and regulatory constraints of real-world implementation.

The methodology is organized into a sequence of phases, as outlined below and illustrated in Figure 2.

It begins with the precise definition of the problem and a comprehensive analysis of the system context, including environmental, technical, and socio-economic factors. Key contradictions and challenges are then systematically identified and formulated using TRIZ tools, which in turn direct the search for solutions toward the most relevant inventive principles and available resources.

The subsequent stages involve the generation of potential solutions, their structured evaluation against predefined technical, economic, and sustainability criteria, and the iterative refinement of the most promising concepts. The process concludes with the selection of solutions ready for implementation, supported by a clear roadmap for deployment and monitoring.

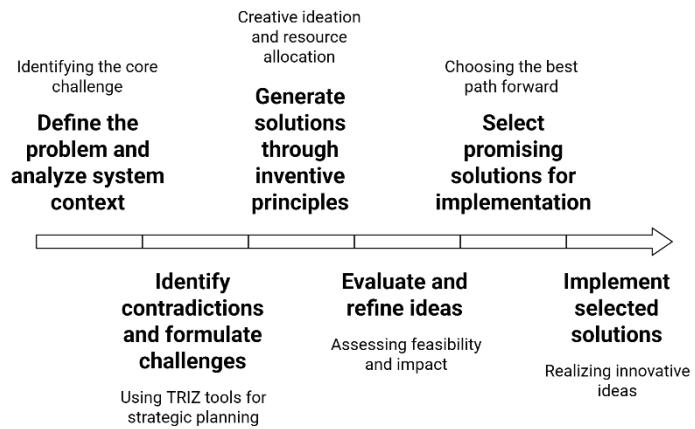


Figure 2: A systematic innovation process for water systems.

Critically, the entire process is conducted by a multidisciplinary team composed of experienced technical specialists and sector-specific managers (in this case, experts in water management) working under the guidance of a professional innovation manager. This ensures that the methodology remains firmly grounded in domain expertise, while benefiting from proven practices in structured innovation management.

As a result, innovative ideas are transformed into practical, high-impact solutions, rather than remaining as untested concepts.

4.1 Problem Definition and System Analysis

Every innovation initiative begins with a precise problem definition, which must not only be accurate in its technical scope but also closely aligned with the specific operational, environmental, and organizational context in which it is addressed.

In the water sector, these problems can range from broad objectives, such as reducing non-revenue water losses in a city's distribution network or improving the resilience of supply systems to drought, to highly specific technical challenges, such as preventing membrane fouling in a desalination plant, mitigating biofilm formation in distribution pipelines,

optimizing energy consumption in high-capacity pumping stations, or enhancing the efficiency of chemical dosing in water treatment facilities.

It is crucial to *frame the problem in a way that does not prejudge the solution*. Teams should gather data on the current system performance, map out the technical and operational context, and identify all stakeholders' needs.

A useful TRIZ-based tool at this stage is the **Multi-Screen (9-Windows) Analysis**, which encourages looking at the system on multiple scales (subsystem, system, supersystem) and time frames (past, present, future) [10].

Another fundamental TRIZ-based tool is **Functional Analysis**, that dissects a system into its functions and components, assessing useful and harmful effects to reveal inefficiencies and root causes. That is done without assuming solutions.

In the water sector -spanning desalination, potable water, wastewater, and distribution- the method supports precise problem definition aligned with operational and environmental contexts.

By mapping each component's role and its interactions (e.g., pumps, pipes, membranes, valves,...), Functional Analysis identifies where systems fall short: e.g. membrane fouling and energy loss in desalination, leaks and biofilm in distribution networks, excessive aeration energy in wastewater treatment, or over-dosing chemicals in potable water plants. This clarity guides targeted innovation, such as anti-fouling membranes, smart leak detection, fine-bubble aeration, or real-time dosing control.

The approach can drive to major technological evolutions: from thermal to energy-efficient desalination processes, from reactive to smart water networks, from pollutant removal to resource recovery in wastewater plants, and from basic disinfection to advanced oxidation for emerging contaminants.

By systematically uncovering weaknesses and harmful effects, Functional Analysis ensures innovations address the right problems, integrate domain expertise, and balance technical, economic, and sustainability goals, turning water infrastructure challenges into opportunities for high-impact, practical solutions.

4.2 Identification of Key Contradictions

After Function Analysis, the team formulates the problem in TRIZ terms by identifying any **technical or physical contradictions**.

A *technical contradiction* occurs when improving one system parameter causes another to worsen. For example, in a distribution network, increasing water pressure improves supply reliability but also increases leakage risk. A *physical contradiction* arises when the same element must possess mutually exclusive properties, such as a valve that must be both perfectly tight (to prevent leaks) but also easy to open (for operational flexibility). In other words, the valve is required to have *maximum sealing force* when closed and *minimum sealing force* when operated: two opposite requirements for the same physical characteristic of the specific object.

Using TRIZ, we strive to eliminate these contradictions rather than settle for a compromise. The problem is so reframed into an abstract formulation: "*Improve X without worsening Y*" (technical contradiction) or "*We need X both high and low*" (physical contradiction).

This abstraction is essential because it allows the use of one of TRIZ's most well-known tools, the **Contradiction Matrix**. The Contradiction Matrix is a reference table developed from the analysis of hundreds of thousands of patents, and is one of the most used TRIZ tool for any technical contradiction.

Rows and columns of the Matrix correspond to 39 generic engineering parameters (e.g., "Pressure", "Energy Consumption", "Ease of Operation"). By locating the improving parameter (X) and the worsening parameter (Y), the matrix points to a shortlist of **Inventive Principles** -in set of 40 available, based on patents statistics- that have, historically resolved similar conflicts in diverse industries.

The innovator then interprets and adapts these principles to the specific problem.

Figure 3 illustrates the methodological flow for using the Contradiction Matrix.

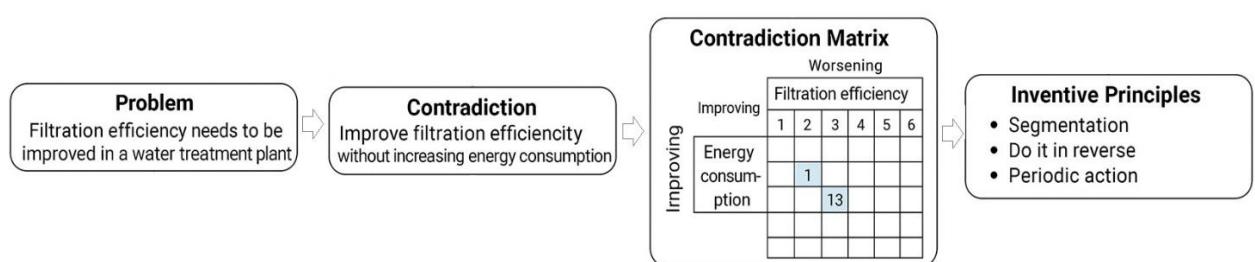


Figure 3: A systematic innovation process for water systems.

Examples in water treatment environment:

1. **Filtration Efficiency vs. Energy Use:** Improving filtration efficiency in a reverse osmosis plant without increasing pump energy. The matrix may suggest the following Inventive Principles: *Segmentation* (use multi-stage filtration) or *Add Another Dimension* (arranging membranes in an optimized spatial layout).
2. **Chemical Disinfection vs. By-product Formation:** Increasing pathogen inactivation without producing more harmful DBPs (disinfection by-products). The matrix points to *Preliminary Action* (apply pre-oxidation to reduce precursor compounds) and *Dynamicity* (adjust dosing in real time based on water quality sensors).
3. **Aeration Efficiency vs. Equipment Wear:** Maximizing oxygen transfer in wastewater aeration tanks without accelerating diffuser wear. The matrix suggests *Periodic Action* (intermittent high-intensity aeration) and *Use of Inert Environment* (design diffusers resistant to fouling and scaling).
4. **Pressure vs. Leakage:** The matrix indicates *Parameter Compensation* (Pressure Compensation) and *Nested Dolls Approach* (Hierarchical structures).

By guiding innovators toward proven inventive strategies, the Contradiction Matrix transforms a vaguely defined improvement goal into a systematic and focused search for high-impact, practical solutions.

4.3 Generation of Solution Concepts

Guided by the contradiction analysis, the team now is ready to generate potential solutions.

At this stage, **TRIZ inventive principles** and the concept of the **Ideal Final Result (IFR)** enter the innovation process. The aim is to systematically explore the entire solution space, ensuring that all possible directions are considered, even if some ideas ultimately prove impractical. Within this space, the most valuable outcomes are the high-level solutions that resolve the problem by using only the resources already available within the system.

These approaches avoid introducing new components or external services, thereby minimizing additional capital and operational costs.

The team should imagine the IFR, even if it seems utopian: for example, an ideal water pipe that never leaks and that if it happens, it repairs itself automatically.

While the ideal may not be fully attainable, this thinking can inspire creative approaches and force specific direct questions: do self-healing pipe materials exist? Can we insert smart leak detectors in every joint?

TRIZ inventive principles provide stimuli for ideation.

Continuing the leak example: Principle #1 “Segmentation” might suggest segmenting the pipeline into modular sections that can be isolated and managed as separated pipes if necessary, or Principle #35 “Parameter change” could mean dynamically adjusting pressure in different sections to minimize stress. Another principle, #10 “Prior Action”, could inspire a preventive solution like lining pipes with a proactive sealant.

Figure 4 shows a visual diagram of the continuous loop contradiction analysis → systematic ideation → evaluation → implementation → back to ideation, applied to the example of leaking pipes.

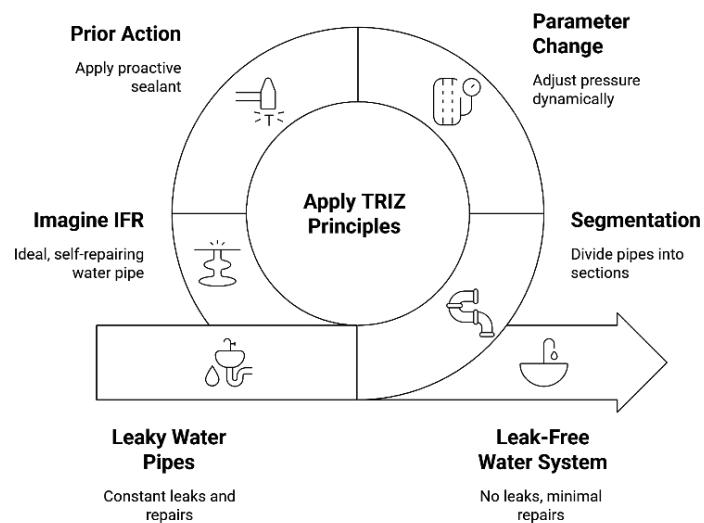


Figure 4: Systematic Innovation Approaches applied to the leaking pipes example.

With such approach, the team systematically goes through relevant principles and generate solution ideas for each of them, using analogies from other fields and known case studies as needed [11].

Crucially, this process must be continuous and structured, ensuring a constant flow of new ideas.

Then, each identified solution should be evaluated not only for its technical feasibility, but also for its alignment with the operational context, cost constraints, and the strategic priorities of the commissioning organization. This ongoing cycle of idea generation, selection, and implementation forms the backbone of any systematic, high-impact innovation process.

4.4 Evaluation and Selection of Ideas

Once a set of solution concepts is generated, the next phase introduces critical thinking back into the process. All the generated ideas are evaluated against practical criteria: technical feasibility, cost, impact on performance, simplicity, time to implement, etc. At this stage, techniques from innovation management and engineering design converge: for instance, a *weighted scoring model* or *multi-criteria decision analysis* are techniques that could be used to rank ideas.

In this phase, it's helpful to revisit the problem constraints and ensure each solution indeed resolves the targeted contradiction without introducing unacceptable new downsides.

Often, the best solution is a combination of concepts from multiple ideas.

This phase may involve simulations or rough calculations (e.g., how much energy a proposed solution might save, or how much it would cost to retrofit an existing system). The systematic framework aids here by linking back to the contradiction: does the solution truly resolve the conflict between X and Y? If an idea doesn't, it likely won't survive the evaluation.

4.5 Implementation Planning through the Digital-Twin/TRIZ Feedback Cycle

At the end of the process, the top-ranked innovative solutions can move into implementation. While the scope of this paper is primarily the idea generation and development stages, implementation planning is a crucial step to ensure that innovation delivers measurable value and is not lost in the transition from concept to practice.

In this stage, the digital twin becomes more than a passive replica: it acts as a dynamic innovation laboratory that not only validates candidate solutions but also continuously generates new insights for the TRIZ process itself.

Rather than treating the twin as the final testing ground, the methodology establishes a circular flow in which real-time data and simulated scenarios reveal emerging contradictions. These contradictions are then abstracted through TRIZ tools, resolved with inventive strategies, and finally re-introduced into the twin for verification under realistic conditions. The result is a closed feedback loop: Digital Twin → contradictions → TRIZ resolution → simulated validation → new knowledge → Digital Twin (Figure 5). Practically, this means that operational scenarios simulated within the twin are not just for risk reduction but also for problem discovery.

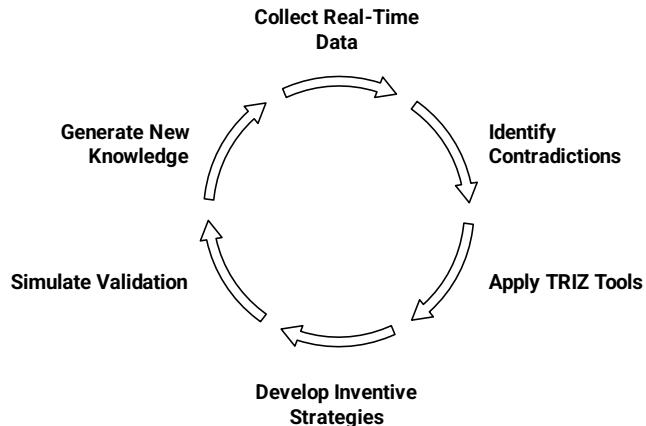


Figure 4: The Digital-Twin innovation cycle.

For example, a desalination plant twin may highlight that increasing operating pressure reduces membrane fouling but simultaneously raises energy costs, or that modifying brine recirculation improves recovery ratios but decreases reliability under seasonal variations. Each of these tensions represents a contradiction in TRIZ terms, feeding the innovation process with precise problem formulations. Conversely, once TRIZ suggests inventive principles, such as segmentation, phase transition, or dynamicity, the twin provides a safe environment to explore their feasibility, stress-test alternatives, and refine the most promising ones before costly deployment.

This dual role positions the twin as both *predictive enabler* and *contradiction generator*. As a predictive enabler, it supports maintenance planning, energy optimization, and quality assurance by integrating physics-based and AI-driven models with real-time operational data. As a contradiction generator, it surfaces trade-offs that might otherwise remain hidden until late operation, ensuring that the TRIZ methodology always tackles problems grounded in system reality. Moreover, the knowledge captured in each iteration, whether a contradiction identified or a solution validated, enriches the organizational memory. Every simulated scenario becomes a case in a growing innovation database, supporting future projects with ready-to-use lessons learned. Implementation may therefore involve both physical pilots and digital twin

prototypes, but with the added advantage that the twin accelerates decision-making, reduces risk, and continuously stimulates new inventive cycles.

In this sense, the digital twin is no longer a static mirror but an active partner in systematic innovation: a laboratory that fuels contradictions, accelerates their resolution through TRIZ, and embeds validated knowledge into the ongoing management of water systems.

5. Application of the Methodology: Examples

To illustrate the effectiveness of systematic innovation, we present two case studies in the water domain.

In each case, a structured TRIZ-inspired approach led to a novel solution that significantly improve performance. The examples are based on publicly available studies and demonstrate how the methodology can be applied step-by-step. While the focus is on water systems, it should be evident how similar approaches could generalize to any other technological field as well.

5.1 Improving Desalination through TRIZ and Digital-Twin (Hybrid Desalination Case Study)

Desalination of seawater is vital for water-scarce regions, but conventional processes are energy-intensive and costly. A case study by Baayyad and Hassani tackled this challenge using a TRIZ-based approach [5]. The specific goal was to improve industrial seawater desalination efficiency without increasing cost or complexity: a clear contradiction between water purity/quantity and energy/cost.

Problem Definition: the team started by analyzing existing desalination techniques (mainly thermal distillation and reverse osmosis) and their limitations. The key problem identified was the high energy consumption and fouling issues in reverse osmosis (RO) membranes. The desired outcome was a process that could produce the same quantity of fresh water with lower energy input and less fouling: essentially aiming for an *ideal* desalination process.

Contradiction Identification: the technical contradiction is “*Increase water output and quality without increasing (indeed preferably reducing) energy usage and membrane fouling*”.

Using TRIZ concepts, the team looked at ways to pre-treat or assist the RO process to resolve the conflict. They identified that pre-removing impurities and reducing load on RO membranes could allow higher throughput *and* lower energy per unit output. This pointed towards a hybrid process.

Solution Generation: by applying the *Contradiction Matrix*, the concept of integrating a freezing step emerged. Freezing desalination, a known technique in which ice crystals exclude salt as they form, was considered because two TRIZ inventive principles from the classical list were identified as relevant: Principle 36, *Phase Transitions* (changing state to solve a problem), and Principle 5, *Merging* (combining systems or operations).

The resulting concept is a hybrid desalination process in which partial freezing produces low-salinity ice crystals for subsequent RO treatment, thereby lowering operating pressure, chemical use, and total energy demand by an estimated 25% compared to conventional RO [12].

Integration with digital twin (Principle #26 - Copy): at this stage, the methodology can be further reinforced by envisaging the role of a digital twin that, in TRIZ terms, this corresponds to Principle #26 (Copy): instead of testing inventive solutions directly on the physical system, a faithful digital copy of the desalination plant could reproduce its thermodynamic and hydraulic behavior.

By integrating sensor data (temperature, pressure, salinity, fouling indicators) with physics-based and AI-driven models, the twin would allow engineers to explore “what-if” scenarios such as fluctuating feedwater quality, variable energy tariffs, or partial membrane fouling.

In this way, the digital twin becomes the bridge between systematic ideation and operational practice: TRIZ provides inventive directions and candidate solutions, while the twin validates and optimizes these solutions in a safe, dynamic environment before physical implementation. The application of the *Digital Twin innovation cycle*, where insights from virtual experiments feed back into the TRIZ process, would continuously refine both the inventive concepts and their practical applicability.

Overall, this example illustrates the potential of systematic innovation in the water sector: by rejecting the traditional trade-off between output and energy, and by drawing on solution principles from outside the immediate field, where freezing is more common in HVAC or cryogenics than in water treatment, innovators can propose creative and unconventional approaches.

Notably, such results could be achieved even by non-experts in the specific domain, within short TRIZ working sessions and with a small number of participants, making the innovation process both cost-predictable and economically sustainable.

5.2 Maximising Treated Sewage Effluent (TSE) Reuse through TRIZ (Policy–Network Case Study)

TSE reuse is a strategic lever for water-scarce Gulf cities, displacing potable demand for irrigation, district cooling and industry while easing reliance on energy-intensive desalination.

Recent programmes in the UAE report 80% utilisation of recycled water in Abu Dhabi [13] and city-wide ambitions to reach 100% reuse in Dubai by 2030, aligned with a national target of ~95% reuse by 2036 [14].

These figures position TSE as a cornerstone of circular water management in the region.

Problem Definition: utilities seek to increase the share and continuity of TSE delivery to high-volume users (e.g., farms, district cooling, industrial customers) without raising operational risk or cost, while ensuring compliance with reuse standards and public acceptance.

In practice, this means expanding “purple-type” networks¹, stabilising quality (e.g., salinity, nutrients, pathogens), matching variable demand profiles (seasonal peaks, irrigation schedules, etc.), and creating incentives and market pathways for uptake [16].

Contradiction Identification: the central technical and organisational is: “*Maximise TSE reuse coverage and volume without increasing quality risk, energy consumption, or operational complexity*”.

A second contradiction also emerges: “*Increase customer uptake of reclaimed water without degrading perceived service or safety*”.

These constraints shape the challenge of scaling reuse in dense urban networks with strict quality requirements and intermittent, peak-driven demand.

Solution Generation: applying the *Contradiction Matrix* it is possible to define a strategy integrating multiple classical TRIZ principles into a unified operational framework.

- Principle 1, *Segmentation*: partition the service area into reuse districts or district-metered areas supplied by tertiary treatment facilities or polishing hubs, enabling targeted TSE routing to fit-for-purpose uses such as district cooling, landscape irrigation, and industrial processes.
- Principle 23, *Feedback*: deploy on-line sensing (e.g., residual disinfectant/UV dose, turbidity, electrical conductivity, microbiological proxies) integrated with SCADA to enable real-time quality-based routing and pressure management.
- Principle 10, *Prior Action*: install decentralised polishing units (e.g., filtration, UV) and appropriately sized storage at demand nodes to buffer diurnal and seasonal variability before peak demand occurs.
- Principle 5, *Merging*: combine operational measures with governance tools (cost-reflective tariffs, connection incentives, service-level agreements) and co-plan TSE trunk mains with district-cooling corridors to reduce capital and operational costs.
- Principle 25, *Resource Utilisation*: reuse existing utility corridors, repurpose tanks for TSE storage, and recover biogas at wastewater treatment plants to offset energy use.

Integration with digital twin (Principle #26 - Copy): At this stage, the methodology can be extended by envisaging the role of a digital twin of the TSE network, which in TRIZ terms corresponds to Principle #26 (Copy).

By incorporating operational data streams, such as flow rates, turbidity, residual disinfectant, conductivity, and microbiological proxies, into hydraulic and demand-forecasting models, a digital twin of the reuse network could provide utilities with a decision-support tool capable of anticipating seasonal peaks, testing alternative district-level routing, or assessing the impacts of sudden quality fluctuations.

Similar to the desalination case discussed in §5.1, the digital twin here would act not as a substitute for TRIZ, but as its operational counterpart in the innovation process: while TRIZ structures the identification of contradictions and inventive directions, the twin translates these ideas into simulated performance outcomes at network scale.

Rather than merely validating isolated concepts, it enables the dynamic combination of multiple strategies (e.g., hydraulic segmentation, predictive storage, quality-based routing) under realistic operating conditions.

In this way, the *Digital Twin innovation cycle* is extended to TSE reuse: insights generated in the virtual environment are continuously fed back into the systematic ideation process, ensuring that proposed measures are not only inventive in principle but also feasible, robust, and adaptive to changing demand and quality scenarios.

Resolution of contradictions: The described approach resolves both contradictions by achieving higher reuse penetration with stable quality and controlled operating expenditure, while substituting potable or desalinated water in priority sectors. Table 1 maps the two key TRIZ contradictions in maximising *Treated Sewage Effluent (TSE) reuse* to the specific TRIZ principles applied, the corresponding operational and policy measures, and the resulting resolution effects.

Identified Contradictions	TRIZ Principle(s)	Operational / Policy Measure	Effect / Resolution
<u>Contradiction nr 1</u>			
1A – Expand TSE coverage without increasing quality risk	Segmentation (1)	Partition service area into reuse districts with hydraulic segregation	Prevents cross-contamination; matches water quality to fit-for-purpose use

¹ “*Purple pipe*” indicates pressurised reclaimed-water mains conveying Tertiary-treated Sewage Effluent (TSE) for non-potable uses; they are colour-coded purple to distinguish them from potable networks and are hydraulically isolated with backflow-prevention devices.

	Feedback (23)	Online sensing of residual disinfectant, turbidity, conductivity, microbiological proxies integrated with SCADA	Ensures real-time quality verification before distribution
	Prior Action (10)	Install polishing units and local storage at demand nodes	Guarantees water quality before peak use; reduces risk from upstream variations
1B – Expand TSE coverage without increasing energy consumption	Resource Utilisation (25)	Recover biogas from WWTPs, reuse existing corridors and tanks	Offsets energy needs; avoids new high-energy pumping infrastructure
	Merging (5)	Co-locate TSE trunk mains with district-cooling corridors	Shares pumping and trenching costs, reducing total energy footprint
1C – Expand TSE coverage without increasing operational complexity	Merging (5)	Integrate operational measures with governance tools (tariffs, incentives, SLAs)	One unified framework instead of multiple disjointed systems
	Feedback (23)	Digital twin + SCADA for centralised, automated control	Simplifies decision-making; reduces manual interventions
Contradiction nr 2			
2A – Increase customer uptake without degrading perceived safety	Prior Action (10)	On-site polishing before delivery	Visibly ensures safety at point of use
	Feedback (23)	Public dashboards of quality data	Builds trust through transparency
2B – Increase customer uptake without degrading service reliability	Segmentation (1)	Local storage to buffer peaks; routing flexibility between districts	Maintains pressure and supply even during high demand
	Predictive Scheduling (extension of Prior Action)	Model-predictive control based on demand forecasts	Ensures water availability during seasonal or diurnal peaks
2C – Increase uptake through incentives without lowering standards	Merging (5)	Pair infrastructure expansion with tariffs, connection incentives, SLAs	Encourages adoption while maintaining contractual quality guarantees

Table 1: Resolution of the two TRIZ contradictions (TSE example).

Despite these benefits, challenges remain: substantial capital investment for purple networks, public acceptance issues in specific end-uses, and the need to harmonise standards and monitoring across jurisdictions. Addressing these will require sustained stakeholder engagement, transparent quality dashboards, and ongoing refinement of regulatory frameworks. This example shows how a systematic innovation approach, combining TRIZ principles with digital-twin-enabled controls and policy design, can enable high-impact reuse at city scale. As in the desalination case, such structured results could be achieved even by non-experts in the specific domain, within brief TRIZ working sessions and with a small, multidisciplinary team, keeping innovation timelines and costs predictable and sustainable.

6. Discussion: Extending the Approach to Other Sectors

While we have framed Systematic Innovation in the context of water infrastructures, the methodology is universal. Systematic Innovation techniques were originally developed by analyzing inventions across all fields of engineering, from aerospace to electronics. Thus, the principles we applied in water systems can readily transfer to other domains. The central mindset is to treat *trade-offs* as hypotheses to overcome, by crafting solutions that resolve their contradictions. For example, the contradiction “*increase energy storage capacity without adding weight*” in the battery sector can be tackled with the same TRIZ toolkit as “*increase water flow without adding pressure*” in pipelines. In fact, this was demonstrated in the energy sector with innovations like multi-functional engine components and dynamic facades for energy-efficient buildings [11].

In practice, many industries have already embraced systematic innovation. Manufacturing companies have used TRIZ to redesign products for *higher quality and lower cost* simultaneously, something that traditional trade-off thinking could not achieve.

Business processes and organizational challenges can also be addressed; the structured elimination of contradictions applies to resolving conflicts like *improving customer service and reducing operational cost*, etc. [17]. The approach is being taught and implemented in sectors as diverse as healthcare (for medical device innovation), software engineering (for inventive algorithms), and Automated Driving Systems design (ADS).

Systematic innovation is not a substitute for human creativity but a means to channel it more effectively, providing an “innovation roadmap” that shortens the trial-and-error cycle.

Organizations looking to adopt this approach should train their teams in these methodologies and possibly establish dedicated innovation units. Some global companies have institutionalized innovation leadership, e.g. by appointing *Chief Innovation Officers*, and embedded TRIZ and related methods into their stage-gate systems; for example, Samsung Electronics Co. introduced TRIZ in 1998 and has maintained it as a core of its innovation process to the present day, an unusually durable adoption in a field where methods often change [18].

For the Middle East’s infrastructure sector, institutionalizing systematic innovation could become a competitive advantage, enabling local engineers and researchers to consistently develop home-grown solutions tailored to their unique challenges.

In summary, the proposed methodology is applicable across many different sectors: while water systems stand to gain significantly given the urgency of their challenges, any field facing complex problems can apply systematic innovation. By embedding a culture of structured creativity, organisations can make *innovation* a continuous and strategic process rather than an occasional effort, thereby amplifying the return on investing in such capabilities.

7. Conclusion

Innovation in critical infrastructure, such as water systems, is far too important to leave to chance. This paper has presented a comprehensive approach to make innovation systematic, using TRIZ and similar methods to inject scientific rigor into the creative process.

Focusing on water infrastructure needs, especially in the Middle East, we demonstrated how defining problems carefully, challenging contradictions, and applying inventive principles can yield solutions that break conventional trade-offs. The case studies of *hybrid desalination* and *Treated Sewage Effluent (TSE) reuse* exemplify measurable gains in efficiency and sustainability achieved through this approach.

The key to these successes is the structured methodology: a logical, algorithmic, and repeatable process that, starting from systematic problem analysis, guided ideation, and thorough evaluation, scientifically leads companies toward innovative solutions and quickly enables them to visualise the technological roadmap they will face in the near future.

Crucially, while our examples centered on water, the methodology’s principles are universal. By embracing systematic innovation, organizations in any sector can enhance their creative output, and turn abstract ideas into more reliable and concrete improvements.

Adopting a systematic innovation framework not only produces better solutions today but also builds an enduring capability to tackle tomorrow’s challenges. In a world of accelerating change, such a capability is perhaps the ultimate competitive advantage, ensuring that innovation becomes a continuous, managed process driving progress in water infrastructure and beyond.

References

- [1] Climate Adaptation Platform. “Middle East Invests in Water Technologies and Infrastructure”, <https://climateadaptationplatform.com>, (Jun 2025).
- [2] World Economic Forum. “From scarcity to solutions: How Asia and the Middle East are advancing food-water innovation”, <https://www.weforum.org>, (Jun 2025).
- [3] Water Environmental Federation. “Innovation: The Key to a Dynamic Water Sector”, <https://www.wef.org>.
- [4] G. Alshuller. “The Innovation Algorithm”, *Technical Innovation Centre Inc*, (2005).
- [5] I. Baayyad, A. Hassani, N. Semlali. “Theory Of Inventive Problem Solving (Triz) Case Study: Development Of A Hybrid Seawater Desalination Process”, *International Journal of Mechanical Engineering and Technology*, Vol. 9, Issue 4, pp. 809–818, (2018).
- [6] G. Bíró. “The TRIZ Innovation Method - For Technical and Other Problems”, Birow, <https://www.birow.com>, (2024).
- [7] J. Goldenberg, D. Mazursky. “Creativity in Product Innovation”, *Cambridge University Press*, (2002).
- [8] W. M. Lindsay, J. R. Evans, “The Management and Control of Quality”, *South-Western*, (2005).
- [9] G. Pahl, W. Beitz, J. Feldhusen, K. H. Grote, “Engineering Design: A Systematic Approach”, *Springer*, 3rd ed., (2007).
- [10] D. Russo, C. Spreafico, N. Mores, “A Water Saving Solution With a TRIZ Based Method”, *International Conference on Engineering Design*, Milano, (2015).
- [11] M. Tatti, “Innovation in Energy Fields with the TRIZ Method: Applications in Key Sectors for the Middle East”, *OMAINTEC 2025*, Jeddah, (2025).
- [12] A. Najim, “A review of advances in freeze desalination and future prospects”, *npj Clean Water*, Vol. 5-15, (2022).
- [13] “SWS breaks regional record by hitting 80% utilisation of recycled water in Abu Dhabi, UAE”, <https://waterwastewaterasia.com/sws-breaks-regional-record-by-hitting-80-utilisation-of-recycled-water-in-abu-dhabi-uae/>, (2023)
- [14] Y. K. Riad, M. Gabriel, N. Pratyush, B. Vu, “Water recycling: Lessons from the Middle East”, *White & Case LLP*, <https://www.whitecase.com/insight-alert/water-recycling-lessons-middle-east>, (2025).

- [15] J. M. Sagasta, M. H. Nassif, M. Tawfik, S. Gebrezgabher, E. Mapedza, N. Lahham, M. Al-Hamdi, “Expanding water reuse in the Middle East and North Africa”, *International Water Management Institute (IWMI)*, ReWater MENA Project, (2023).
- [16] S. Asaad, A. Suleiman, “Socio-demographic factors and treated wastewater reuse in the MENA region: Insights and implications”, *Desalination*, Vol. 565, Art. 116830, (2023).
- [17] D. Mann, “Hands-On Systematic Innovation for Business and Management”, *IFR Press*, (2014).
- [18] O. Feygenson (Samsung TRIZ Master e Principal Engineer), “Developing Innovations in Electronics and Software Using TRIZ with AI Interactions”, *15th International Conference on Systematic Innovation ICSI2024*, Keynote speech, (2024).